Expressions in discrete mathematics

 

Question 1

1 / 1 pts

The expression  A \vee B A∨B is not true unless A and B are both true propositions.

 

True

 

Correct!

 

False

 

 

Question 2

1 / 1 pts

The expression  C \oplus D C⊕D cannot be true if C and D have the same truth value.

Correct!

 

True

 

 

False

 

 

Question 3

1 / 1 pts

The expression  \neg F ¬F always has the opposite truth value from F.

Correct!

 

True

 

 

False

 

 

Question 4

1 / 1 pts

The expression  G \Rightarrow H G⇒H cannot be true if G itself is a false proposition.

 

True

 

Correct!

 

False

 

 

Question 5

1 / 1 pts

True or false:  (Q \wedge \neg~Q) \vee (\neg~Q \oplus Q) , where  Q Q is the proposition that Arthur Conan Doyle wrote a prime number of Sherlock Holmes stories.

Correct!

 

True

 

 

False

 

 

There’s not enough information provided to answer this question, at least not in a reasonable amount of time, and with the facts in my possession.

 

Question 6

1 / 1 pts

True or false:  P \Rightarrow N P⇒N, where  P P is the proposition that pigs can fly, and  N N is the proposition that there are 192 member states of the United Nations.

Correct!

 

True

 

 

False

 

 

There’s not enough information provided to answer this question, at least not in a reasonable amount of time, and with the facts in my possession.

 

Question 7

1 / 1 pts

If  https://canvas.umw.edu/equation_images/J%2520%255Cwedge%2520B%2520  is true for some propositions J and B, then  https://canvas.umw.edu/equation_images/J%2520%255Cvee%2520B  is also definitely true.

Correct!

 

True

 

 

False

 

 

Question 8

1 / 1 pts

If  G \Rightarrow W G⇒W is false for some propositions G and W, then  G \oplus W G⊕W is definitelytrue.

Correct!

 

True

 

 

False

 

 

Question 9

3 / 3 pts

Find binary values for X and Y such that  (\neg X \oplus Y) \wedge \neg Y (¬X⊕Y)∧¬Y is true:

X= 0 , Y= 0

Answer 1:

Correct!

0

 

Answer 2:

Correct!

0

 

 

Question 10

3 / 3 pts

Find binary values for  A A,  B B, and  C C, such that  \neg (\neg A \Rightarrow (B \oplus C)) \wedge C ¬(¬A⇒(B⊕C))∧C istrue:

A= 0 (false) , B= 1 (true) , C= 1 (true)

Answer 1:

Correct!

0 (false)

 

Answer 2:

Correct!

1 (true)

 

Answer 3:

Correct!

1 (true)

 

 

Question 11

2 / 2 pts

Supposes LOVES(x,y) is the proposition that person x loves person y. Which English sentence is a valid interpretation of the following assertion?

\forall x \ \exists y \ \text{LOVES}(x,y) ∀x&exists;yLOVES(x,y)

 

Nobody loves me.

 

 

I love everybody.

 

Correct!

 

Everybody loves somebody.

 

 

There’s some lovey dovey person who loves every single person in the world.

 

No matter who a person is, you can always find somebody who loves them.

 

Question 12

1 / 1 pts

Let OlympicAthlete(x) be the proposition that x is or was an Olympic athlete, and let Male(x) be the proposition that x personally identifies with the male gender. True or false:

\forall x \text{ OlympicAthlete}(x) \Rightarrow \text{Male}(x) ∀xOlympicAthlete(x)⇒Male(x)

 

True

 

Correct!

 

False

 

 

Question 13

1 / 1 pts

Let HasMoreTwitterFollowersThan(x,y) be the proposition that Twitter user x has more followers than Twitter user y does (at this moment in time). True or false:

\exists x \exists y \text{ HasMoreTwitterFollowersThan}(x,y) &exists;x&exists;yHasMoreTwitterFollowersThan(x,y)

Correct!

 

True

 

 

False

 

 

Question 14

1 / 1 pts

\exists x \forall y \text{ HasMoreTwitterFollowersThan}(x,y) &exists;x∀yHasMoreTwitterFollowersThan(x,y)

Correct Answer

 

True

 

You Answered

 

False

 

 

Question 15

1 / 1 pts

\forall x \exists y \text{ HasMoreTwitterFollowersThan}(x,y) ∀x&exists;yHasMoreTwitterFollowersThan(x,y)

 

True

 

Correct!

 

False