A set can be heterogeneous (i.e., it can have different kinds of elements in it)
1 / 1 pts
A set can be heterogeneous (i.e., it can have different kinds of elements in it).
Correct!
True
False
1 / 1 pts
If set A is a subset of set B, then every element of A is also a member of B.
Correct!
True
False
1 / 1 pts
Correct!
True
False
1 / 1 pts
Correct!
True
False
1 / 1 pts
Ø⊆X⊆Ωfor any setX.
Correct!
True
False
1 / 1 pts
True
Correct!
False
1 / 1 pts
True
Correct!
False
1 / 1 pts
True
Correct!
False
1 / 1 pts
Correct!
True
False
1 / 1 pts
True
Correct!
False
1 / 1 pts
{(bill,ted),(ted,bill)}={(ted,bill),(bill,ted)}
Correct!
True
False
1 / 1 pts
Which of the following are elements of {Gold, Silver, Bronze}×{Phelps, Bolt}?
Gold
Bolt
{ Gold, Silver, Bronze }
( Gold, Silver, Bronze )
( Phelps, Bolt )
Correct!
( Gold, Bolt )
Correct!
( Silver, Phelps )
1 / 1 pts
What’s ?
{ (Tweedledee, Tweedledum), (Tweedledum, Tweedledee) }
{ , Tweedledee, Tweedledum }
Correct!
{ { Tweedledum, Tweedledee }, { Tweedledum }, , { Tweedledee } }
(Tweedledee, Tweedledum)
1 / 1 pts
LetDbe the set \{ Pikachu, Charmander \}, andCbe the set \{ Pikachu, Piplup \}.
What’s D∪C?
Correct!
{ Pikachu, Charmander, Piplup }
{ Pikachu }
( Pikachu, Piplup )
1 / 1 pts
LetDbe the set \{ Pikachu, Charmander \}, andCbe the set \{ Pikachu, Piplup \}.
What’s D∩C?
{ Pikachu, Piplup }
Pikachu
Correct!
{ Pikachu }
{ Pikachu, Charmander, Piplup }
1 / 1 pts
LetDbe the set \{ Pikachu, Charmander \}, andCbe the set \{ Pikachu, Piplup \}.
What’s D−C?
{ Pikachu, Piplup }
Correct!
{ Charmander }
Piplup
Pikachu
1 / 1 pts
LetDbe the set \{ Pikachu, Charmander \}, andCbe the set \{ Pikachu, Piplup \}.
What’s C−D?
Piplup
{ Piplup, Charmander }
( Piplup, Charmander )
Charmander
Correct!
{ Piplup }
1 / 1 pts
Let D be the set {Grumpy, Happy, Sneezy, Sleepy, Dopey, Bashful, Doc}.
Is {{Bashful},Ø,{Dopey, Grumpy, Sneezy, Sleepy, Happy},{Doc}}a partition of D?
Correct Answer
Yes
You Answered
No
1 / 1 pts
Let D be the set
Is {{Happy, Doc},{Grumpy, Sneezy, Happy},{Bashful},{Dopey, Sleepy}}a partition of D?
Yes
!
No
1 / 1 pts
Let D be the set {Grumpy, Happy, Sneezy, Sleepy, Dopey, Bashful, Doc}.
Is {{Dopey},{Sleepy},{Sneezy},{Doc},{Bashful},{Happy}} a partition of D?
Yes
Correct!
No