A set can be heterogeneous (i.e., it can have different kinds of elements in it)

 

Question 1

1 / 1 pts

A set can be heterogeneous (i.e., it can have different kinds of elements in it).

Correct!

 

True

 

 

False

 

 

Question 2

1 / 1 pts

If set A is a subset of set B, then every element of A is also a member of B.

Correct!

 

True

 

 

False

 

 

Question 3

1 / 1 pts

\mathbb{R} \cup \mathbb{R} = \mathbb{R} \cap \mathbb{R}

Correct!

 

True

 

 

False

 

 

Question 4

1 / 1 pts

\{\heartsuit, \spadesuit, \diamondsuit\} = \{\spadesuit, \heartsuit,
\diamondsuit\}

Correct!

 

True

 

 

False

 

 

Question 5

1 / 1 pts

\varnothing \subseteq X \subseteq \Omega \text{ for any set } X.
Ø⊆X⊆Ωfor any setX.

Correct!

 

True

 

 

False

 

 

Question 6

1 / 1 pts

-5 \in \mathbb{N}

 

True

 

Correct!

 

False

 

 

Question 7

1 / 1 pts

5 \in \mathbb{P}(\mathbb{N})

 

True

 

Correct!

 

False

 

 

Question 8

1 / 1 pts

\{5\} \subseteq \mathbb{P}(\mathbb{N})

 

True

 

Correct!

 

False

 

 

Question 9

1 / 1 pts

\{5\} \in \mathbb{P}(\mathbb{N})

Correct!

 

True

 

 

False

 

 

Question 10

1 / 1 pts

\text{(bill,ted)} = \text{(ted,bill)}

 

True

 

Correct!

 

False

 

 

Question 11

1 / 1 pts

{(bill,ted),(ted,bill)}={(ted,bill),(bill,ted)}

Correct!

 

True

 

 

False

 

 

Question 12

1 / 1 pts

Which of the following are elements of  \{ \text{Gold, Silver, Bronze} \} \times \{ \text{Phelps,
Bolt} \} {Gold, Silver, Bronze}×{Phelps, Bolt}?

 

Gold

 

 

Bolt

 

 

{ Gold, Silver, Bronze }

 

 

( Gold, Silver, Bronze )

 

 

( Phelps, Bolt )

 

Correct!

 

( Gold, Bolt )

 

Correct!

 

( Silver, Phelps )

 

 

\varnothing

 

Question 13

1 / 1 pts

What’s  \mathbb{P}(\{ \text{Tweedledee, Tweedledum} \}) ?

 

{ (Tweedledee, Tweedledum), (Tweedledum, Tweedledee) }

 

 

\varnothing , Tweedledee, Tweedledum }

Correct!

 

{ { Tweedledum, Tweedledee }, { Tweedledum }, \varnothing, { Tweedledee } }

 

(Tweedledee, Tweedledum)

 

 

Question 14

1 / 1 pts

LetDbe the set \{ Pikachu, Charmander \}, andCbe the set \{ Pikachu, Piplup \}.

What’s  D \cup C D∪C?

Correct!

 

{ Pikachu, Charmander, Piplup }

 

 

{ Pikachu }

 

 

( Pikachu, Piplup )

 

 

\varnothing

 

Question 15

1 / 1 pts

LetDbe the set \{ Pikachu, Charmander \}, andCbe the set \{ Pikachu, Piplup \}.

What’s  D \cap C D∩C?

 

{ Pikachu, Piplup }

 

 

Pikachu

 

Correct!

 

{ Pikachu }

 

 

{ Pikachu, Charmander, Piplup }

 

 

Question 16

1 / 1 pts

LetDbe the set \{ Pikachu, Charmander \}, andCbe the set \{ Pikachu, Piplup \}.

What’s  D - C D−C?

 

{ Pikachu, Piplup }

 

Correct!

 

{ Charmander }

 

 

Piplup

 

 

Pikachu

 

 

Question 17

1 / 1 pts

LetDbe the set \{ Pikachu, Charmander \}, andCbe the set \{ Pikachu, Piplup \}.

What’s  C - D C−D?

 

Piplup

 

 

{ Piplup, Charmander }

 

 

( Piplup, Charmander )

 

 

Charmander

 

Correct!

 

{ Piplup }

 

 

Question 18

1 / 1 pts

Let  D D be the set  \{ \text{ Grumpy, Happy, Sneezy, Sleepy, Dopey,
Bashful, Doc } \} {Grumpy, Happy, Sneezy, Sleepy, Dopey, Bashful, Doc}.

Is {{Bashful},Ø,{Dopey, Grumpy, Sneezy, Sleepy, Happy},{Doc}}a partition of  D D?

Correct Answer

 

Yes

 

You Answered

 

No

 

 

Question 19

1 / 1 pts

Let  D D be the set  \{ \text{ Grumpy, Happy, Sneezy, Sleepy, Dopey,
Bashful, Doc } \}

Is {{Happy, Doc},{Grumpy, Sneezy, Happy},{Bashful},{Dopey, Sleepy}}a partition of  D D?

 

Yes

 

!

No

 

 

Question 20

1 / 1 pts

Let  D D be the set  \{ \text{ Grumpy, Happy, Sneezy, Sleepy, Dopey,
Bashful, Doc } \} {Grumpy, Happy, Sneezy, Sleepy, Dopey, Bashful, Doc}.

Is {{Dopey},{Sleepy},{Sneezy},{Doc},{Bashful},{Happy}} a partition of  D D?

 

Yes

 

Correct!

 

No